Control Flow Integrity of
Dynamic Programming
Using an FPGA Board

-~

Contact:
sdmay?1-10@iastate.edu

sdmay21-10 Client:
Dr. Akhilesh Tyagi

Gregory Wendt - Meeting Scribe Faculty Advisors:
Cole Schumacher - Meeting Facilitator Zelong Li

Nickolas Mitchell - Chief Engineer (FPGA) .
Sam Henley - Chief Engineer (Software) Ananda Biswas
Maxwell Wrangler - Test Engineer
Tristan Duyvejonck - Report Manager

mailto:sdmay21-10@iastate.edu

Defining the Problem

The compiler breaks up instructions into groups - “basic blocks”
Attacker can cause program to jump to an unexecuted basic :

%11 = load i32, i32* %9, align 4
%12 = icmp slt i32 %11, 100
bril %12, label %13, label %35

block
o Inject malicious code

%15:

. x I8]* @.str.3, 164 0, 164 0
‘br label %17

B:
%16 = call i32 (i8*, ...) @pﬂnlf(lﬁ‘ getelementptr inbounds ([15 x i8), [15

%2:

%3 = alloca i32, align 4

%4 = alloca i32, align 4

%5 = alloca i8**, align 8

%6 = alloca i32, align 4

%7 = alloca i32, align 4

%8 = alloca i32, align 4

%9 = alloca 32, align 4

store i32 0, i32* %3, align 4
store i32 %0 i32* %4, align 4
store i8** %1 i8Hk %5 align 8
store 32 0, i32* %9, ahgn 4
br label %10

}

%10:

F

A

%13:

13:
%14 =
%15 = call i32 @foo(i32 %14)
store i32 %15, i32* %6, align 4

17 = srem i32
%18 = icmp eq 132 %17, 0
bril %18, label %19, label %22

load 132, i32* %9, align 4

= load i32, 132’;%6 align 4

T [F

-

|

%19:

%20 = load 132, i32* %6, align 4
%21 = call i32 @bar(i32 %20)
store i32 %21, i32* %7, align 4

%22:

%23 = load i32, i32* %6, align 4
%24 = call 32 @baz(i32 %23)
store i32 %24, i32* %7, align 4
br label %25

br label %25

g

%25:

25:

%26 = load 32, i32* %6, align 4
%27 = load 132, i32* %7, align 4
%28 = add nsw i32 %26, %27
%29 = call i32 @foo(i32 %28)
store i32 %29, i32* %8, align 4
%30 = load i32, i32* %8, ali

gn 4
%31 = call i32 (i8%, ...) @printf(i8* getelementptr inbounds ([4 x i8], [4 x

... i8]* @.str, 164 0, 64 0), i32 %30)

br label %32

>

%32

%33 load i32, i32* %9, align 4
%34 = add nsw i32 %33, 1
store i32 %34, i32* %9, align 4
brlabel %10

CFG for 'main' [unction

%35:

35:
reti32 0

Project Goal

Detect breaches in control-flow integrity using dynamic programming
on an FPGA board

We did this by:
e Creating race logic in a higher level language
to test.

Integrating race logic into hardware (FPGA).
Set up communicate between computer and

FPGA.
Computer FPGA
@ P Result
RaceLog|
readLables &
Program >
readExpected

AAAAAAA

EASAVASRS RN
PANAVAVNANANQY

e Goalisto get from the upper left
orner to the bottom right in the
fewest steps possible.
e Legal moves are step to the right,

one step d pdw thfth mh sciers ot \‘“\‘;“‘\‘\‘
e NI ANV ANA S SN AN

PANAVANE VAN
PANAVAVINAMANRY
JAVANAVAN NN

path While the red path is one of the
most inefficient.

—

https://docs.google.com/file/d/1TmiHdh1duIX9jYQwwRR_hLBDjJlc7W9K/preview

Testing Race Logic

e All types of edge cases were tested

(@)

o O O O

Does the algorithm works with different string lengths
Does it work for the same string length

Does it work if the strings are the same

Does it work with mixed characters (letter and numbers)
Does it work if a string is empty

e All expected outcomes were manually calculated to compare with

https://docs.google.com/file/d/1w3H0ySV9CJOLFhTqphxWj5nnxEOsAnOn/preview

LLVM

LLVM: Compiler and toolchain
Convert source code to Intermediate Representation (IR)
e Portable, high-level assembly language
Passes: transformations or optimizations to a program
e st Pass: read program and get sequence of basic blocks
e 2nd Pass: inject function at the end of each basic block, generate
seguence of basic blocks encountered at runtime
Issues:

e Misunderstanding of our passes late in development

https://docs.google.com/file/d/14zvYbNIYt-ReZDsxNcPUyWw9dnESWUcC/preview

FPGA

Process

Development in Quartus Prime using VHDL
Originally planned to use Modelsim
Translated C and Java Race Logic into VHDL
Changes to Race Logic in VHDL

o 8-bitinputs

o Non-Changeable string length

Communication between computer and FPGA board

Using UART over USB
Worked on VHDL and Visual Studio C++ solution

Requirements and Constraints

Engineering Requirements

e Create an algorithm to match two sets of strings (race logic).

e One string string generated based on control flow, and compared to
a defined string.

e Use a2-D grid of which the size is determined by the number of
basic blocks.

e Algorithm should perform in O(n log(n)) runtime.

o Current performs at O(nm)

Engineering Constraints
e Use dynamic programming to determine if CFl was lost.
e Use a FPGA board to test the solution.
e Total project cost should not exceed $100.

Lessons Learned

e Better communication with client
o Better defining the problem earlier on
e Spend less time prototyping
o Creating a better defined project plan would help us save time
on the project
o Developing our algorithm in both C and Java was not
necessary. We could have started in C.
e Commitmentto plans
o Planned to work through winter term but little work was done
during this period
o Planned to use Trello but didn't follow through

Lessons Learned

e Better team communication

o Insure all teammates are receiving real time notifications
e |dentify major hurdles

o Plan to spend more time on the major hurdles

o Start major hurdles earlier

Work Done - Greg

Worked on race logic with Max.
Wrote tests for race logic and fixed algorithm when they didn't pass
Helped turn it from Java to C and retested it

Assisted in research and problem solving for VHDL and LLVM

Work Done - Cole

e Meeting Facilitator
o Helped coordinate and set up weekly meetings
o Communicated between team and client
e FPGA Research
o Met with Nick to discuss different FPGA issues
o Researched different FPGA solution options
o Experimented with some FPGCA simulation techniques

Work Done - Nick

Work Completed
e Implemented Java Race Logic
e [PGA
o Translated Java and C Race Logic to VHDL
e Researched UART communication between computer and FPGA

Challenges Worked on
e Setting up the FPGA to work with my personal computer
o Received help from ETG to resolve this
e Setting up communication link between FPGA and Computer
o Personal computer doesn't recognize FPGA as a serial device
o UART code doesn’t work well with Windows.

Work Done - Sam

e Development of LLVM Passes
o Learn what LLVM is/ how it works
o Finding examples of LLVM passes

o Adapting the sample passes to meet our specifications

Work Done - Max

Created the pseudocode for the Race Logic Algorithm

Created a test suite for the Java version of the Race Logic Algorithm
Helped migrate the Java version of the Algorithm to C

Created a test framework for the C code for the Race Logic
Algorithm

Helped write tests cases for the C code.

Work Done - Tristan

e Report Manager

o Managed report submissions and content

o Edited content before final submission of group assignments
e Helped Sam with LLVM tests

o Helped with understanding the build process

Thank You!

Contact For Question:
sdmay?]-10@iastate.edu

mailto:sdmay21-10@iastate.edu

