
Control Flow Integrity of
Dynamic Programming
Using an FPGA Board

Contact:
sdmay21-10@iastate.edu

Client:
Dr. Akhilesh Tyagi

Faculty Advisors:
Zelong Li

Ananda Biswas

Gregory Wendt - Meeting Scribe
Cole Schumacher - Meeting Facilitator

Nickolas Mitchell - Chief Engineer (FPGA)
Sam Henley - Chief Engineer (Software)

Maxwell Wrangler - Test Engineer
Tristan Duyvejonck - Report Manager

sdmay21-10

mailto:sdmay21-10@iastate.edu

● The compiler breaks up instructions into groups - “basic blocks”
● Attacker can cause program to jump to an unexecuted basic

block
○ Inject malicious code

Defining the Problem

Project Goal

Detect breaches in control-flow integrity using dynamic programming
on an FPGA board

We did this by:
● Creating race logic in a higher level language

to test.
● Integrating race logic into hardware (FPGA).
● Set up communicate between computer and

FPGA.

Race Logic

● Goal is to get from the upper left
corner to the bottom right in the
fewest steps possible.

● Legal moves are one step to the right,
one step down or, if the characters at
the locations are the same, a step
both down and right.

● The blue is one of the most efficient
path while the red path is one of the
most inefficient.

Race Logic Demo

Video Here

https://docs.google.com/file/d/1TmiHdh1duIX9jYQwwRR_hLBDjJlc7W9K/preview

Testing Race Logic

● All types of edge cases were tested
○ Does the algorithm works with different string lengths
○ Does it work for the same string length
○ Does it work if the strings are the same
○ Does it work with mixed characters (letter and numbers)
○ Does it work if a string is empty

● All expected outcomes were manually calculated to compare with

Testing Race Logic Demo

https://docs.google.com/file/d/1w3H0ySV9CJOLFhTqphxWj5nnxEOsAnOn/preview

LLVM

LLVM: Compiler and toolchain

Convert source code to Intermediate Representation (IR)

● Portable, high-level assembly language

Passes: transformations or optimizations to a program

● 1st Pass: read program and get sequence of basic blocks

● 2nd Pass: inject function at the end of each basic block, generate

sequence of basic blocks encountered at runtime

Issues:

● Misunderstanding of our passes late in development

LLVM Demo

https://docs.google.com/file/d/14zvYbNIYt-ReZDsxNcPUyWw9dnESWUcC/preview

FPGA

Process
● Development in Quartus Prime using VHDL
● Originally planned to use Modelsim
● Translated C and Java Race Logic into VHDL
● Changes to Race Logic in VHDL

○ 8-bit inputs
○ Non-Changeable string length

Communication between computer and FPGA board
● Using UART over USB
● Worked on VHDL and Visual Studio C++ solution

Requirements and Constraints

Engineering Requirements
● Create an algorithm to match two sets of strings (race logic).
● One string string generated based on control flow, and compared to

a defined string.
● Use a 2-D grid of which the size is determined by the number of

basic blocks.
● Algorithm should perform in O(n log(n)) runtime.

○ Current performs at O(nm)

Engineering Constraints
● Use dynamic programming to determine if CFI was lost.
● Use a FPGA board to test the solution.
● Total project cost should not exceed $100.

Lessons Learned

● Better communication with client
○ Better defining the problem earlier on

● Spend less time prototyping
○ Creating a better defined project plan would help us save time

on the project
○ Developing our algorithm in both C and Java was not

necessary. We could have started in C.
● Commitment to plans

○ Planned to work through winter term but little work was done
during this period

○ Planned to use Trello but didn’t follow through

Lessons Learned

● Better team communication
○ Insure all teammates are receiving real time notifications

● Identify major hurdles
○ Plan to spend more time on the major hurdles
○ Start major hurdles earlier

Work Done - Greg

● Worked on race logic with Max.

● Wrote tests for race logic and fixed algorithm when they didn’t pass

● Helped turn it from Java to C and retested it

● Assisted in research and problem solving for VHDL and LLVM

Work Done - Cole

● Meeting Facilitator
○ Helped coordinate and set up weekly meetings
○ Communicated between team and client

● FPGA Research
○ Met with Nick to discuss different FPGA issues
○ Researched different FPGA solution options
○ Experimented with some FPGA simulation techniques

Work Done - Nick

Work Completed
● Implemented Java Race Logic
● FPGA

○ Translated Java and C Race Logic to VHDL
● Researched UART communication between computer and FPGA

Challenges Worked on
● Setting up the FPGA to work with my personal computer

○ Received help from ETG to resolve this
● Setting up communication link between FPGA and Computer

○ Personal computer doesn’t recognize FPGA as a serial device
○ UART code doesn’t work well with Windows.

Work Done - Sam

● Development of LLVM Passes

○ Learn what LLVM is / how it works

○ Finding examples of LLVM passes

○ Adapting the sample passes to meet our specifications

Work Done - Max

● Created the pseudocode for the Race Logic Algorithm
● Created a test suite for the Java version of the Race Logic Algorithm
● Helped migrate the Java version of the Algorithm to C
● Created a test framework for the C code for the Race Logic

Algorithm
● Helped write tests cases for the C code.

Work Done - Tristan

● Report Manager
○ Managed report submissions and content
○ Edited content before final submission of group assignments

● Helped Sam with LLVM tests
○ Helped with understanding the build process

Thank You!

Contact For Question:
sdmay21-10@iastate.edu

mailto:sdmay21-10@iastate.edu

