
Introduction/Motivation

Design Requirements

Design Approach

Technical Details

Testing

Figure 1: Overall Design

Intended Users and Uses

Group: sdmay21-10
Gregory Wendt, Cole Schumacher, Nickolas Mitchell, Sam Henley, 

Maxwell Wangler, Tristan Duyvejonck

Client: Dr. Akhilesh Tyagi Advisors: Zelong Li, Ananda Biswas

● The algorithm matches two sets of strings 
(race logic). 

○ One string string generated based on 
control flow, and compared to a 
defined string. 

○ Use a 2-D grid of which the size is 
determined by the number of basic 
blocks.

● Host machine generates strings based on 
the sequence of basic blocks using LLVM.

● Host machine and FPGA must 
communicate with each other.

● The algorithm should run fast. O(nlog(n)) is 
the target runtime.
○ ultimately ended up needing it to be 

O(nm) in current version 

Race Logic Algorithm:
● 8-bit Inputs

○ The two input strings are 8-bits each. 
○ The result is an integer between 0-255 

depending on how different the two 
strings are. 

○ The larger the result, the more likely 
control flow has been broken

LLVM:
● Get the sequences of basic blocks
● Develop passes - transformations to 

program before compilation

FPGA:
● VHDL 

○ Using Quartus Prime to Implement
● UART communication between computer 

and FPGA 
○ FPGA receives two strings from 

computer to run through our VHDL race 
logic then the result is returned to the 
computer. 

JUnit:
● In early versions of our racelogic, we 

used JUnit to see if our algorithm 
works. When we moved to C, these 
same tests were recreated with C 
compatible testing methods.

C test suite:
● A custom C test framework was 

developed to test our C code when it 
was migrated. This was created to 
verify that our algorithm could still 
function.

LLVM:
● Several sample programs were 

developed and sent through the 
LLVM passes, then we compared the 
results of each pass.

● Intended users of this project include IT 
personnel and any company concerned with 
cyber security.

● Intended uses include the ability to detect faults 
in race logic and security for networks.

Control-flow integrity (CFI) is an important 
attribute of a program execution in cybersecurity 
engineering. CFI means that during the program 
execution, a control flow edge that is not part of 
the program's control flow graph (CFG) should not 
be taken. This project entails developing a 
dynamic programming based model of CFI based 
on some CFG attributes. This project and an 
additional model with FPGA 2-D array solver using 
delay stacking that are to be combined into a 
control flow integrity engine.

The figure above depicts our overall design. 
When approaching this design, we decided to 
break our project down into different modules. 
The different modules include RaceLogic, 
LLVM, and FPGA. Connecting these three 
modules gives us our overall design. 

Figure 2: Race Logic

The figure above is an example of the logic 
behind our Race Logic Algorithm. The Blue 
path is the most efficient way to travel from 
the upper left hand corner to the lower right 
hand corner using only legal moves. The Red 
is the most inefficient path.

Standards Used
IEEE 1008-1987 IEEE 1500-2005

IEEE 15288-2004 IEEE 1220-2005


