EE/CprE/SE 492 - sdmay21-10

Dynamic Programming Based FPGA Hosted Control-Flow Integrity (CFI) Report 5

March 15th - March 29th Client: Akhilesh Tyagi Faculty Advisors: Zelong Li, Ananda Biswas

Team Members

Gregory Wendt - Meeting Scribe Cole Schumacher - Meeting Facilitator Nickolas Mitchell - Chief Engineer (FPGA) Sam Henley - Chief Engineer (Software) Maxwell Wangler - Test Engineer Tristan Duyvejonck - Report Manager

Past Weeks Accomplishments

Over the past two weeks, our team has finished our C code to the extent that it matches the current Java code. Furthermore, Nick completed the VHDL implementation of our race logic algorithm and started looking into ways to communicate between a computer and the FPGA. Lastly, Sam continued researching and developing the LLVM pass required for our project.

Pending Issues

- Work towards a better understanding of LLVM compilers
 - Develop pass for inserting a function after each basic block
- Test VHDL code
- Brainstorm ways to send data to the FPGA board.
 - FPGA solution will need two string inputs for the program to use
 - \circ $\;$ Could use meta data from a header file or research other methods.
 - Output from the FPGA program then needs to be sent back to the computer to be analyzed.

Individual contributions

NAME	Individual Contributions (Quick list of contributions. This should be short.)	Hours this week	HOURS cumulative
Gregory Wendt	Finished C tests so that it matches the Java code. Added information about possible future features to the design document	3	17
Cole Schumacher	Helping coordinate meetings with TA's and team, Research and development into FPGA and implementation with Quartus Prime/Modelsim	4	16
Nickolas Mitchell	Completed VHDL code/started researching how to communicate between computer and FPGA.	9	41
Sam Henley	Continued research and development with LLVM	4	23
Maxwell Wangler	Finished the C code, and finished the test suite for the C code.	2	14.5
Tristan Duyvejonck	Was not able to contribute	0	3

Plans for the Upcoming Report

- Gregory
 - Communication between FPGA and computer.
- Cole
 - Research simulation tools in Quartus Prime
- Nickolas
 - Test VHDL code
 - Continue researching ways to communicate with FPGA from computer
 - Most promising is UART as of right now
- Sam
 - Complete function insert pass
- Maxwell
 - Figure out communication between FPGA board and the computer.
- Tristan
 - Work with Sam developing LLVM passes

```
//tests the programs normal behavior
int smokeTest()
{
    char expected[20] = {'a','b','c','d','b','e', '\0'};
char actual[20] = {'a','a','c','d','b','e','d','b', '\0'};
    int value = 11;
    return init_RaceLogic(actual, expected) == value;
/**
* testing one middle being different
*/
int sameLengthTestl()
{
    char expected[20] = {'a','c','c', '\0'};
char actual[20] = {'a','b','c', '\0'};
    int value = 4;
    return init_RaceLogic(actual, expected) == value;
3
1**
* testing end being different
*/
int sameLengthTest2()
{
    char expected[20] = {'a','b','b', '\0'};
char actual[20] = {'a','b','c', '\0'};
    int value = 4;
   return init_RaceLogic(actual, expected) == value;
}
/**
* testing end being different (same as last test but actual and expected are reversed)
*/
int sameLengthTest3()
{
    char expected[20] = {'a','b','c', '\0'};
char actual[20] = {'a','b','b', '\0'};
    int value = 4;
    return init_RaceLogic(actual, expected) == value;
/**
* testing larger string
*/
int sameLengthTest4()
{
    char expected[20] = {'a','b','c','d', '\0'};
char actual[20] = {'a','b','b','d', '\0'};
    int value = 5;
    return init_RaceLogic(actual, expected) == value;
3
```

Figure 1.1 Sample of test in C code

```
--RaceLogic HERE--
for i in 0 to 7 loop
for j in 0 to 7 loop
temp <= 0;
-- Statement #1 --
if i /= 6 then
if (mat(i,j) < mat((i+1),j)) or (mat((i+1),j)) = 0 then
temp <= mat(i,J);
mat((i+1),j) <= temp + 1;
end if;
-- Statement #2 --
if j /= 6 then
if (mat(i,j) < mat(i,(j+1))) or (mat(i,(j+1)) = 0) then
temp <= mat(i,J);
mat(i,(j+1)) <= temp + 1;
end if;
-- Statement #3 --
if (i /= 6) and (j /= 6) then
if (mat(i,j) < mat((i+1),(j+1))) or (mat((i+1),(j+1)) = 0) then
temp <= mat(i,J);
mat((i+1),(j+1)) <= temp + 1;
end if;
-- Statement #3 --
if (i /= 6) and (j /= 6) then
if (mat(i,j) < mat((i+1),(j+1))) or (mat((i+1),(j+1)) = 0) then
temp <= mat(i,J);
mat((i+1),(j+1)) <= temp + 1;
end if;
end if;
end if;
end if;
end if;
end if;
=- Set Output --
o_result <= mat(7,7);
</pre>
```

Figure 2.1 VHDL RaceLogic